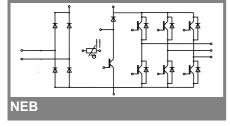
SKiiP 01NEB066V1

MiniSKiiP® 0

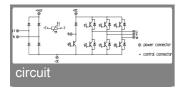
1-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 01NEB066V1

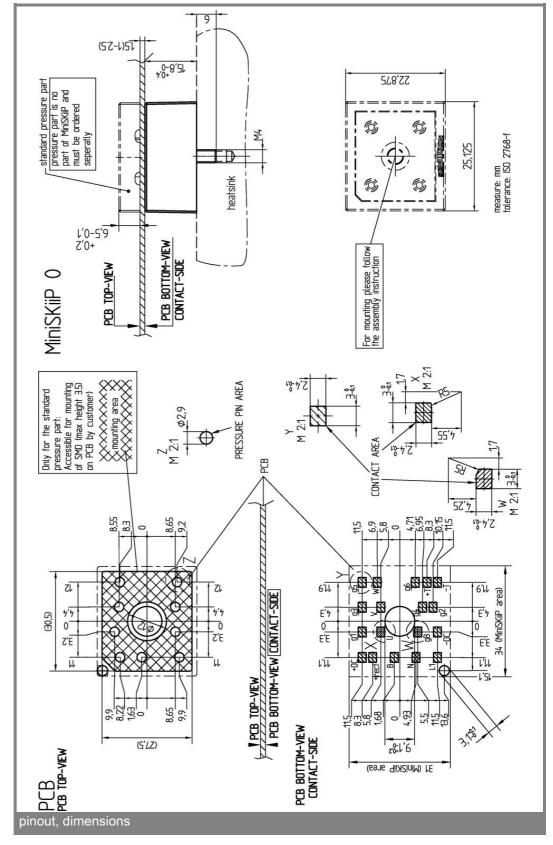
Target Data

Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 3,5 kVA
- Typical motor power 1,5 kW


Absolute	Maximum Ratings	T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	T _s = 25 (70) °C	13 (10)	Α				
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$	14 (11)	Α				
V_{GES}	·	± 20	V				
T _j		- 40 + 175	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C	15 (11)	Α				
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$	16 (13)	Α				
T _j		- 40 + 175	°C				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	T _s = 70 °C	35	Α				
I _{FSM}	t _p = 10 ms, sin 180 °, T _i = 25 °C	220	Α				
i²t	t _p = 10 ms, sin 180 °, T _i = 25 °C	240	A²s				
T _j		- 40 + 150	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	Α				
T_{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characteristics		$_{\rm s}$ = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter, Chopper								
V_{CEsat}	I _C = 6 A, T _j = 25 (125) °C	1,1		1,85 (2,05)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$		5,8		V			
$V_{CE(TO)}$	$T_j = 25 (125) ^{\circ}C$		0,9 (0,7)	1,1 (1)	V			
r _T	$T_j = 25 (125) ^{\circ}C$		100 (167)	134 (184)	mΩ			
C _{ies}	$\dot{V}_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,45		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,1 0,05		nF nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$							
$R_{th(j-s)}$	per IGBT		2,4		K/W			
$t_{d(on)}$	under following conditions		20		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns			
t _{d(off)}	$I_C = 6 \text{ A}, T_j = 125 °C$		175		ns			
t _f	$R_{Gon} = R_{Goff} = 120 \Omega$		60		ns			
E _{on}	inductive load		0,22		mJ			
E _{off}			0,12		mJ			
	Diode - Inverter, Chopper							
$V_F = V_{EC}$	I _F = 6 A, T _j = 25 (125) °C		1,3 (1,3)	1,6 (1,6)	V			
$V_{(TO)}$	$T_j = 25 (150) ^{\circ}C$		0,9 (0,8)	1 (0,9)	V			
r _T	$T_j = 25 (1150) ^{\circ}C$		67 (83)	100 (117)	mΩ			
$R_{th(j-s)}$	per diode		3		K/W			
I _{RRM}	under following conditions		11,2		Α			
Q_{rr}	$I_F = 6 \text{ A}, V_R = 300 \text{ V}$		0,9		μC			
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		0,19		mJ			
	$di_F/dt = 520 \text{ A/}\mu\text{s}$							
Diode - Rectifier								
V_{F}	I _F = 15 A, T _j = 25 °C		1,1		V			
$V_{(TO)}$	T _j = 150 °C		0,8		V			
r _T	T _j = 150 °C		20		mΩ			
$R_{th(j-s)}$	per diode		1,5		K/W			
Temperature Sensor								
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
w			21,5		g			
M_s	Mounting torque	2		2,5	Nm			

SKiiP 01NEB066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.